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Abstract. In this paper, we investigate the possibility to have supersymmetry breaking with background
modulus fields in four-dimensional product-group gauge theories. The vacuum expectation values of the
modulus fields satisfy several relations, and their dependences of the action can be fixed by loop-level
consistency of the model. We examine the mass spectrum of vector and matter multiplets up to one-loop
order of perturbation theory. As an application, it is found that the properties of higher-dimensional
supersymmetry breaking are well captured in the various limits in the moduli space. In particular, we have
finite radiative corrections to the Higgs masses in the case that is shown to be equivalent to the boundary
condition breaking of supersymmetry.

1 Introduction

Motivated by the gauge hierarchy problem, physics with
extra dimensions has provided new insights on various as-
pects of particle physics, cosmology and astrophysics [1,
2]. There, however, seems to be some difficulty in dis-
cussing the issues in the ultraviolet regime since higher-
dimensional theories are generally non-renormalizable in
the usual sense. Recently, a four-dimensional framework
describing the physical nature of higher-dimensional theo-
ries has been proposed in [3,4]. This framework consists of
a gauge theory of product group and scalar fields in the bi-
fundamental representations of the nearest-neighbor gauge
groups. If one assumes that the bi-fundamental scalars
develop vacuum expectation values (VEVs), the gauge
groups are broken to a simple diagonal subgroup. It has
been shown that with a sufficiently large number of gauge
groups, the mass spectrum of gauge fields is equivalent in
the intermediate energy regime to the Kaluza–Klein (KK)
mass spectrum of five-dimensional gauge theory. This ap-
proach is providing new tools for four-dimensional model
building and moreover for understanding unexplored prop-
erties of higher-dimensional theories. In fact, various ap-
plications along this line have been discussed in the liter-
ature [5].

In [6], we have studied a model with supersymmetry
(SUSY) breaking induced by modulus fields which are nat-
urally incorporated into the above framework. The mod-
ulus fields are found to satisfy some relations and to have
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non-trivial dependences of the action, if one wants to see
a description of higher-dimensional effects. In [6], we have
identified the modulus form of the action and verified it
for a five-dimensional vector multiplet by explicitly calcu-
lating the tree-level mass spectrum of the gaugino and the
associated adjoint scalar. Various types of SUSY-breaking
mass spectra predicted in higher-dimensional models ap-
pear as the corresponding limits in the parameter space of
the modulus F terms.

In this paper, as an extension of the previous results, we
formulate a four-dimensional model with general matter
multiplets, and evaluate one-loop radiative corrections to
the mass spectrum. We first fix the modulus couplings
to the matter multiplets as well as to the vector ones,
and then calculate radiative corrections to the gaugino
and scalar soft masses in detail. It will be found that the
above-mentioned resemblances of the mass spectrum to
the existing higher-dimensional models still hold even at
the quantum level. In addition, we study the ultraviolet
behavior of the radiative corrections and find in some case
the correction to the Higgs masses to be finite. Such a case
is explicitly shown to be closely related to the boundary
condition breaking of supersymmetry.

This paper is organized as follows. In Sect. 2, we first re-
view the action for vector multiplets and the resulting tree-
level mass spectrum of the gauginos and adjoint scalars.
We also fix the modulus couplings to the matter multiplets
and calculate the (SUSY-breaking) masses at the classical
level. With the complete action at hand, radiative cor-
rections to the masses of vector and matter multiplets are
studied in detail in Sect. 3. Section 4 gives some arguments
about the finiteness property of loop corrections found in
Sect. 3. There we will particularly pay attention to some
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relation between the finite corrections and the boundary
condition breaking of supersymmetry. Section 5 is devoted
to a summary of the paper.

2 Classical action

2.1 Vector multiplets

The model we consider is a four-dimensional SUSY gauge
theory with the gauge groups G1 ×G2 × . . .×GN . We sim-
ply assume all the gauge couplings gi to have the universal
value g. The four-dimensionalN = 1 vector multiplet Vi of
the Gi gauge theory contains a gauge field Aiµ and a gaug-
ino λi. In addition, we have the N = 1 matter multiplets
Qi ( i = 1, . . . , N) in the bi-fundamental representation;
that is,Qi transforms as ( , ) under the (Gi, Gi+1) gauge
groups. (GN+1 is identified with G1.) The field content of
the model is then summarized below:

G1 G2 G3 . . . GN
Q1 1 . . . 1
Q2 1 . . . 1
...

...
...

...
. . .

...
QN 1 1 . . .

(2.1)

The gauge-invariant Lagrangian for the vector multiplets
and the Qi is written as

Lvec =
∑
i

[∫
d2θ SWα

i Wαi + h.c.

+
∫

d2θd2θ̄ KQ(S, S†)Q†
i e

∑
VQi

]
, (2.2)

where Wα
i is the field strength superfield of the Gi gauge

group, and S is a dilaton-like background superfield whose
scalar component determines the value of g [see (2.6)].
In fact, one may introduce a dilaton field for each gauge
theory Gi. We now take the universal value of the gauge
couplings and use S as a representative of such dilaton
fields. The normalization functionKQ(S, S†) of the matter
field Qi is given by [6]

KQ(S, S†) =
8

1/S + 1/S† , (2.3)

which can be fixed by several classical-level consistencies
as will be discussed at the end of this section. Moreover,
this form of KQ will be found in the next section to be
important for the loop-level consistency of the model.

If one considers the case that theQi have VEVs propor-
tional to the unit matrix, 〈Qi〉 = v,1 the gauge symmetries

1 More generic cases with non-universal values of the gauge
couplings and VEVs of the Q correspond to gauge theories
on curved backgrounds [7, 8] and low-energy gauge symme-
try breaking [9]. We do not consider these possibilities in the
present work

are broken down to its diagonal subgroup G. With this
symmetry breaking, the mass eigenvalues and eigenstates
of the gauge fields are found to be

mn = 2v sin
nπ
N
,

Ãnµ =
1√
N

N∑
j=1

(ωn)jAjµ,
(n = 0, . . . , N − 1), (2.4)

where ωn = e2πin/N . One can see the KK tower of massive
gauge fields as well as the massless one which belongs to
the unbroken subgroup G. It is interesting to note that
the spectrum matches that of five-dimensional gauge the-
ory with compact extra dimensions [3,4]. Actually, in the
large N limit with v/N fixed, the gauge boson masses ap-
proximately become

mn � 2vnπ
N

=
n

R
, (2.5)

where the compactification radius R is identified as 2πR =
N/v. With this identification, v is interpreted (for fixedN)
as an ultraviolet cutoff of the effective four-dimensional
theory, and N is the number of KK modes which exist
between the cutoff and compactification scales.

In the absence of SUSY breaking, the gauginos and the
associated adjoint scalars, which are linear combinations
of the original fields λi and Qi, have mass spectra degener-
ate with that of the gauge bosons (2.4). Before examining
SUSY-breaking mass splitting, it may be instructive to
recall the modulus fields in our model and their mutual
relations. In addition to the S introduced above, there is a
modulusQ which determines the size of the universal VEV
v. The modulus Q may be a normalized composite field
or a linear combination of the Qi. Throughout this paper,
we assume just for simplicity that the moduli forms of the
dilatons Si and the Qi are invariant under the “transla-
tion” transverse to the four dimensions, that is, they are i
independent. The forms of the VEVs of these moduli are
then defined by

S =
1

4g2 + FSθ
2, Q = v + FQθ

2. (2.6)

Furthermore, it will turn out to be useful to define the
additional background modulus fields with the following
VEVs:

S4 =
1

4g2
4

+ FS4θ
2, S5 =

1
4g2

5
+ FS5θ

2,

T =
1
R

+ FT θ
2, (2.7)

where g4 and g5 are the effective gauge coupling constants
in four and five dimensions, respectively. It is important
to notice that all these modulus fields are not independent
variables. By comparing the Kaluza–Klein theory with the
low-energy description of the model below the cutoff v,
one finds the following matching conditions between the
parameters [3, 4]:

2πR =
N

v
, g2

4 =
g2

N
. (2.8)



N. Maru, K. Yoshioka: Sparticle masses in 4D product-group gauge theories 247

Table 1. The modulus F terms of the typical SUSY-breaking
scenarios

FS FQ FS4 FS5 FT

dilaton
(FT ≡ 0)

FS 0 NFS vFS 0

moduli
(FS4 ≡ 0)

0 FQ 0
1

4g2 FQ
2π
N

FQ

radion
(FS5 ≡ 0)

−FQ

4g2v
FQ

−NFQ

4g2v
0

2π
N

FQ

The first condition in (2.8) was already adopted in (2.5),
which was required to match the spectrum with that of
KK theory. The second condition is regarded as a volume
suppression of bulk gauge coupling in compactifying an
extra dimension. In addition to these, the normalization
of the gauge kinetic terms provides a relation between g4
and g5, irrespectively of how to define the five-dimensional
model,

g2
5 = 2πRg2

4 . (2.9)

These three relations among the couplings suggest the fol-
lowing relations among the modulus fields:2

S4 = NS, S5 = QS, T =
2π
N
Q. (2.10)

We thus find that the modulus fields S4, S5 and T are
expressed in terms of the two moduli S and Q. As a re-
sult, the two-dimensional parameter space of the F com-
ponents of S and Q describes SUSY-breaking patterns in
our model. In [6], we clarified that several limits in this
parameter space describe bulk SUSY-breaking patterns
which have been discussed in the literature.3 In Table 1,
the typical cases are presented for the dilaton/moduli dom-
inated SUSY-breaking [11] and for SUSY breaking by the
radius modulus F term [12, 13]. The specification of each
limit is also given in the table. For example, the dilaton
dominance scenario is defined by FT = 0, which is in turn
translated to the limit FQ = 0 in our model [see (2.10)].
In the following, we will study the SUSY-breaking effects
from these modulus fields and examine the sparticle spec-
trum of the model.

If one introduces suitable potentials for the modulus
fields, their VEVs are fixed to some point in the parame-
ter space. For example, since S is a dilaton for each gauge
group, stabilization mechanisms proposed in the literature
could be incorporated in the present model. The situation
is similar for the modulus Q. Moreover in properly de-
scribing five-dimensional theory, Q is assumed to be stabi-
lized by relevant potential terms [3, 10]. However, details
of potential form are not relevant to us. Without referring
to specific models, we explore the whole parameter space

2 The 1PI and holomorphic gauge couplings differ only at
higher-loop level in perturbation theory

3 Supersymmetry breaking that is local in the higher-
dimensional bulk was also studied within four-dimensional
product-group gauge theories [10]

of the modulus F terms and then focus on several lim-
its corresponding to bulk SUSY-breaking patterns. We do
not try to construct the specific dynamics for the modu-
lus fields where potential couplings are tuned for realizing
the fifth dimension. Our aim here is not to present five-
dimensional theories. It is only the relevant region of mod-
uli space where our model reproduces bulk SUSY-breaking
scenarios. In other words, the present framework contains
unexplored four-dimensional phenomena of SUSY break-
ing.

Now the SUSY-breaking mass spectrum can be derived
from the Lagrangian (2.2) with turning on the modulus F
terms. The result is written by use of the above-defined
moduli and their relations,

mλn± = ±
√
m2
n +

∣∣∣∣ FS5

2 〈S5〉
∣∣∣∣2 − FT

2 〈T 〉 , (2.11)

m2
cn

= m2
n + 2 Re

(
F ∗
S5

〈S5〉
FT
〈T 〉

)
, (2.12)

wheremλn± andmcn are the KK masses of gauge fermions
and adjoint scalars. The bracket 〈 〉 denotes a VEV of its
lowest scalar component. The positive (negative) sign in
mλn± corresponds to the gaugino (the Goldstone fermion)
masses in the supersymmetric limit. Note that the results
are expressed by five-dimensional quantities only. In par-
ticular, it is found that the zero-mode gaugino mass is
given by both the radius modulus and the five-dimensional
dilaton. This result is expected from (2.9), which implies
that S4 depends both on T and S5 (TS4 = 2πS5).

We here explicitly show the several limits in order. As
mentioned before, the dilaton-dominated SUSY breaking
is characterized by the condition FT = 0. In this limit, we
find

mλn± = ±
√
m2
n + |2g2FS |2, m2

cn
= m2

n [dilaton].
(2.13)

The gaugino mass spectrum is indeed the one expected in
supergravity models. All the KK states including the zero
mode receive the universal SUSY-breaking contribution
from the modulus S, the two level-n spinors are degener-
ate in mass, and the mass splittings between bosons and
fermions are equal for all KK modes. These results may be
understood from the fact that the dilaton field commonly
couples to any field in the theory.

On the other hand, the limit of the moduli-dominated
SUSY breaking is defined by FS4 = 0 and then leads to

mλn± = ±
√
m2
n +

∣∣∣∣FQ2v
∣∣∣∣2 − FQ

2v
,

m2
cn

= m2
n + 2

∣∣∣∣FQv
∣∣∣∣2

[moduli]. (2.14)

It is interesting to note that even when the SUSY-breaking
effect is turned on, the zero-mode gaugino remains mass-
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less.4 This is exactly the tree-level spectrum predicted in
this class of SUSY-breaking models [11,14]. Since FS4 = 0
by definition, the zero-mode gaugino mass is vanishing and
is shifted at loop level by string threshold corrections or
effects of bulk fields. The situation may be similar to the
model where the vector multiplets behave as messengers
of SUSY breaking and sparticle soft masses are calculated
from the wave function renormalization in four dimen-
sions [15]. There may also be an intuitive explanation for
the above type of spectrum. That is, a non-zero F term
of the modulus which determines the KK masses does not
induce tree-level SUSY-breaking masses for zero modes.
This is because these two mass terms are proportional to
the KK numbers. In our case, such a modulus corresponds
to the one whose scalar component obtains a VEV ∝ 1/R
and is given by Q ∝ T .

The last example, FS5 = 0, realizes the SUSY breaking
with the radius modulus field. The sparticle mass spectrum
in this limit becomes

mλn± = ±mn − FT
2 〈T 〉 , m2

cn
= m2

n [radion]. (2.15)

The gaugino mass matches the one calculated in [13]. The
vanishing SUSY-breaking masses of the adjoint scalars
agree with the fact that this limit is equivalent to the
Scherk–Schwarz mechanism [16], which is now applied to
the SU(2)R symmetry under which the adjoint scalar is a
singlet and hence does not get a symmetry breaking mass.

Before closing this subsection, we comment on the nor-
malization function KQ(S, S†). The form of KQ (2.3) is
determined so that it satisfies several non-trivial require-
ments. First, the holomorphy requires the normalization
of Qi to be 〈KQ〉 = 1/g2, which leads to the same normal-
ization for the vector and adjoint chiral multiplets of the
low-energyG gauge theory. Moreover, the radius superfield
in our model becomes independent of the dilaton super-
field [see (2.10)]. This seems plausible since an undesirable
relation between the theta angle and the graviphoton field
does not arise. Another consistency concerns the 5-5 com-
ponent of the five-dimensional metric g55. In a continuum
five-dimensional theory, the kinetic terms of the bosonic
fields along the fifth dimension have the dependence of
g55

√
g55 g

55 ∝ 1/R. In the present model, the second
term in the Lagrangian (2.2) becomes the kinetic energy
in the continuum limit, and its modulus dependence is
given by

〈
KQ(S, S†)Q†Q

〉
. Equation (2.3) then indicates〈

KQQ
2
〉 ∼ 〈

SQ2
〉 ∼ 〈S5T 〉. Consequently, the metric de-

pendence agrees for a fixed value of the five-dimensional
coupling g5.

2.2 Matter multiplets

Next let us discuss matter multiplets, which can be re-
garded as hypermultiplets if one takes the five-dimensional

4 The level n = 0 spinor being affected by the non-zero F
terms is the Goldstone fermion associated to gauge symmetry
breaking

limit. As in the case of vector multiplets, we will determine
the proper form of the moduli dependences of the matter
action and then examine the SUSY-breaking mass spec-
trum at tree level. One-loop corrections to the masses of
the scalar components in these matter multiplets will be
studied in Sect. 3.

In addition to the fields in the previous subsection, we
introduce a set of vector-like chiral multiplets Φi and Φ̄i
for each gauge group Gi:

G1 G2 G3 . . . GN
Φ1 1 . . . . . . 1
Φ̄1 1 . . . . . . 1
Φ2 1 . . . . . . 1
Φ̄2 1 . . . . . . 1
...

...
...

...
. . .

...
ΦN 1 1 . . . . . .

Φ̄N 1 1 . . . . . .

(2.16)

The gauge-invariant Lagrangian for the matter sector can
be described by

Lmat =
N∑
i=1

[∫
d2θd2θ̄ Kh(S, S†)

[
Φ†
i e

2ViΦi + Φ̄ie−2ViΦ̄†
i

]

+
∫

d2θ
[
Y Φ̄iQiΦi+1 + ZΦ̄iΦi

]
+ h.c.

]
, (2.17)

where ΦN+1 is identified to Φ1. We have assumed that the
coupling constants are universal for simplicity. The back-
ground chiral superfields Y and Z in the superpotential
are the modulus fields providing the Yukawa and mass pa-
rameters. As will be seen below, these fields are expressed
in terms of the moduli S and Q. Similar to the vector
multiplet case, it is a non-trivial problem to fix the moduli
dependence of the normalization functionKh(S, S†). That
issue will be discussed later.

2.2.1 Superpotential

First we study the moduli dependence of the superpoten-
tial terms. It is convenient to rescale the matter multiplets
as (Φ, Φ̄) → 〈Kh〉− 1

2 (Φ, Φ̄) so that the kinetic terms are
canonical. In the rescaled basis, the superpotential contri-
bution to the supersymmetric mass terms reads

Wmass =
1

〈Kh〉
∑
i,j

Φ̄i

(
〈Y 〉 v δi+1,j + 〈Z〉 δi,j

)
Φj . (2.18)

It is easily found that the relation 〈Y 〉 =
√

2 〈Kh〉 must be
satisfied if one requires the matter spectrum to be equiva-
lent to that of a vector multiplet (i.e. that of KK theory in
the five-dimensional limit). This implies the moduli form

Y = Kh(S, S). (2.19)
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Given this relation, diagonalizing the supersymmetric mass
term leads to

Wmass =mn
˜̄ΦmδmnΦ̃n +

( 〈Z〉 / 〈Kh〉 + v
) ˜̄ΦnΦ̃n, (2.20)

where the supersymmetric eigenstates Φ̃n and ˜̄Φn (m,n =
0, . . . , N−1) are defined similar to those of the vector fields
(2.4). The irrelevant phase factors have been absorbed in
the field redefinitions so that the mass eigenvalues are real.
In the absence of non-zero F terms, the mass eigenstates
take the same form as the gauge fields. The first term
in the right-handed side of (2.20) corresponds to the KK
masses and the second one to a bare mass parameter of
the matter multiplet. When the bare mass m is defined
by 〈Z〉 / 〈Kh〉 + v = m/R, the modulus Z should take the
form

Z =
(

2πm
N

− 1
)
QKh(S, S). (2.21)

Now that the moduli dependences of the superpotential
part are fully determined, their contribution to the SUSY-
breaking masses can be analyzed. From (2.17), (2.19) and
(2.21), we find the mass eigenvalues of the spinor compo-
nents:

mψn = mn +
m

R
(n = 0, . . . , N − 1). (2.22)

The scalar soft mass terms from the superpotential are
written

LW = (2.23)[〈
∂ lnKh(S, S)

∂ lnS

〉
FS
〈S〉 +

FT
〈T 〉

] ˜̄φm (mn +
m

R

)
δmnφ̃n

+h.c.,

where φ and φ̄ are the scalar components of Φ and Φ̄,
respectively. This is the holomorphic mixing mass term of
φ and φ̄. In the rescaled basis, the mixing masses depend
on the Kähler factor Kh, but they should be cancelled if
one includes the full contribution of the modulus fields as
will be seen below.

2.2.2 Kähler potential

Scalar masses also come from the Kähler potential since it
has the moduli dependence and so is non-canonical. The
masses of the spinor components (2.22) do not get changed
by the Kähler terms. For the rescaled fields defined above,
we read off the Lagrangian (2.17),

LK

=
N∑
i=1

[
|Fφi

|2 +
〈
∂ lnKh

∂S

〉
FSF

†
φi
φi +

〈
∂ lnKh

∂S†

〉
F †
Sφ

†
iFφi

+
〈

1
Kh

∂2Kh

∂S∂S†

〉
|FS |2φ†

iφi + |Fφ̄i
|2 +

〈
∂ lnKh

∂S

〉
FSφ̄iF

†
φ̄i

+
〈
∂ lnKh

∂S†

〉
F †
SFφ̄i

φ̄†
i +

〈
1
Kh

∂2Kh

∂S∂S†

〉
|FS |2φ̄iφ̄†

i

]
.

(2.24)

Integrating out the matter auxiliary components Fφi
and

Fφ̄i
and moving to the supersymmetric mass basis, we have

LK =

−
N−1∑
n=0

[(
|mψn

|2 +
〈
∂ lnKh

∂S

∂ lnKh

∂S† − 1
Kh

∂2Kh

∂S∂S†

〉
FSF

†
S

)

×
(
φ̃†
nφ̃n + ˜̄φn˜̄φ†

n

)
+2mψn

〈
∂ lnKh

∂S

〉
FS

˜̄φnφ̃n + h.c.
]
. (2.25)

Combining this with the superpotential contribution to the
scalar masses (2.23) and noting that 〈∂ lnKh(S, S)/∂S〉 =
2 〈∂ lnKh/∂S〉 = 2

〈
∂ lnKh/∂S

†〉, we finally obtain the
scalar mass matrix for matter multiplets:

Lscalar =

−
N−1∑
n=0

(
φ̃†
n˜̄φn
)

(2.26)

×

|mψn |2 + Γ

∣∣∣∣ FS〈S〉
∣∣∣∣2 −m∗

ψn

F ∗
T

〈T 〉
−mψn

FT
〈T 〉 |mψn

|2 + Γ

∣∣∣∣ FS〈S〉
∣∣∣∣2

φ̃n˜̄φ†

n

 ,

Γ ≡
〈

∂2 lnK−1
h

∂ lnS∂ lnS†

〉
. (2.27)

Thus the tree-level mass eigenvalues are given by

m2
φn± = |mψn |2 ±mψn

FT
〈T 〉 + Γ

∣∣∣∣ FS〈S〉
∣∣∣∣2

(n = 0, . . . , N − 1). (2.28)

One can see in this formula that the effect of the modulus
S is controlled by the factor Γ , which is a function of the
normalization constant in the matter Kähler term, while
the FT part does not depend on it. For example, Γ = b/4
for the Kähler form

Kh = (S + S†)bX(S)X(S†), (2.29)

where b is a constant and X is an arbitrary function. We
find that b = 1 and X = constant are the appropriate
form if one wants to describe five-dimensional theory. This
choice is supported by examining the tree-level spectrum
and radiative corrections, which will be discussed in the
following sections. Such a Kähler function indeed satisfies
the following non-trivial consistencies:
(i) the mass spectrum of scalar matters including SUSY-
breaking effects coincides with that of gauginos,
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(ii) the cutoff dependences of radiative corrections become
consistent with known results, and
(iii) the moduli dependence of the action has the proper
form similar to the argument given at the end of Sect. 2.1.

2.2.3 Various limits

We have determined all the moduli dependences of the ac-
tion except for Kh and presented the superparticle spec-
trum for vector and matter multiplets in four-dimensions:
(2.4), (2.11), (2.12), (2.22), and (2.28). It has been shown
that for the gaugino mass, the several limits of the F terms
suggest the five-dimensional properties of SUSY breaking.
Let us examine the scalar mass spectrum for the typical
cases shown in Table 1. The first is the dilaton dominance
limit defined by FT = 0. It is found from (2.28) that the
scalar mass eigenvalues in this limit become

m2
φn± = |mψn |2 + Γ

∣∣∣∣ FS〈S〉
∣∣∣∣2 [dilaton]. (2.30)

As expected, the SUSY-breaking contributions are univer-
sal for all the scalar fields. If one takes the Kähler form
(2.29) with b = 1, the spectrum (2.30) (with a vanishing
bare mass m) is the same as that of the gauge fermions
(2.13). The second limit we consider is the moduli domi-
nance which leads to the mass eigenvalues

m2
φn± = |mψn |2 ±mψn

FQ
v

[moduli]. (2.31)

It is interesting to note that the spectrum is predicted
independently of the detailed form of the matter Kähler
function Kh. Moreover, the zero mode (n = 0) does not
get SUSY-breaking effects and remains massless. These
features are certainly shared with gauginos. In the approx-
imation that SUSY-breaking effect is much smaller than
the compactification scale, the mass eigenvalues of the ex-
cited modes are written mφn± � mψn

± FQ/2v, which is
also consistent with the KK gauginos.

In the limit FS5 = 0, we have

m2
φn± = |mψn |2 ±mψn

FT
〈T 〉 + Γ

∣∣∣∣ FT〈T 〉
∣∣∣∣2 [radion].

(2.32)
The mass eigenvalues (2.32) have the same form as those
of the gauginos when b = 1 for the matter Kähler form.
Note that the masses of the excited modes approximately
agree with those in the moduli dominance limit. The only
difference is whether the zero mode is massless or not,
which mode is identified with the low-energy degree of
freedom in the five-dimensional viewpoint.

We thus find from the tree-level analysis of the mass
spectrum that b = 1 in the Kähler form (2.29) is a suit-
able choice for the normalization of matter multiplets. The
remaining functional dependence X will be fixed by loop-
level consistency of theory.

2.3 Orbifolding

The analysis above has been performed for the case that
corresponds to the circle compactification of the fifth di-
mension. It is straightforward to extend it to the compact-
ification on the line segment. For vector multiplets, what
we have to do is removing a bi-fundamental field, e.g. QN .
This procedure leads to a four-dimensional vector multi-
plet as the light degrees of freedom. The gauge anomaly
arising from removing QN can be supplemented by intro-
ducing appropriate chiral fields charged under the G1 and
GN gauge symmetries. The effects of these “local” fields
can be neglected in the large N limit. For matter mul-
tiplets, the absence of one anti-chiral multiplet, e.g. Φ̄N ,
leaves a chiral zero mode of the fundamental representa-
tion of the diagonal subgroup G. If one chiral multiplet,
e.g. Φ1, is removed, the zero mode is the anti-fundamental
representation. In these cases, suitable anomaly cancel-
lations are also required. The gauge-invariant Lagrangian
and its moduli dependences are almost the same as before.
For example, when Φ̄N is removed, the mass eigenvalues
and eigenstates are given by

mn = mψn = 2v sin
( nπ

2N

)
(n = 0, . . . , N − 1), (2.33)

Φ̃n =

√
2

2δn0N

N∑
j=1

cos
(

2j − 1
2N

nπ
)
Φj ,

˜̄Φn =

√
2
N

N−1∑
j=1

sin
(
j

N
nπ
)
Φ̄j . (2.34)

This result can be obtained for the case of removing Φ1 by
exchanging Φ ↔ Φ̄, and in a similar way for the vector mul-
tiplets. The SUSY-breaking mass formulas do not change
except for the expression of mn. It is, however, noted, in
contrast to the previous section, that the bare mass pa-
rameters of matter multiplets can be introduced only if
there is a set of matter multiplets which leaves vector-like
massless modes.

3 Quantum analysis

We have discussed SUSY-breaking effects through the
moduli S and Q, and we calculated the tree-level spec-
trum by determining the proper moduli dependences of
the action. We particularly showed that on the several
specific lines in the parameter space of FS and FQ, the
sparticle spectra are consistent with the high-dimensional
SUSY-breaking patterns. Note that, in some cases, the low-
energy degrees of freedom do not obtain SUSY-breaking
effects and remain massless in the tree-level approxima-
tion. It is then important, e.g. for realistic model building,
to include radiative corrections. In this section, we will
calculate various types of one-loop corrections to gaugino
and Higgs scalar masses from gauge and Yukawa interac-
tions. In the following, the analysis will be performed in
the case of orbifold compactification.
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3.1 Gaugino masses

3.1.1 Vector contribution

The first type of one-loop corrections which contribute
to zero-mode gaugino masses involves vector and adjoint
scalar multiplets running in the loops. Let us recall that
the mass matrix of the nth massive gauge fermions takes
the form

−1
2
(
λ̃n χ̃n

)( FS

2〈S〉 mn

mn − FQ

〈Q〉 − FS

2〈S〉

)(
λ̃n
χ̃n

)
+ h.c., (3.1)

where χn are the Goldstone spinors associated with the
gauge symmetry breaking. The eigenvalues mλn± of this
matrix were given by (2.11), and the mixing angle between
λn and χn upon diagonalization satisfies

tan 2θn =
2mn 〈S5〉
FS5

. (3.2)

At the component level, there are two types of one-loop
diagrams for the gaugino two-point function, which come
from gauge fields and adjoint scalars, respectively,

Igauge =
(

g√
N

)2

C2(G)

×
N−1∑
n=0

∫
d4k

i(2π)4
gµν

(p− k)2 −m2
n

σµ

×
[

cos2 θn
mλn+− k/

+
sin2 θn
mλn−− k/

]
σν , (3.3)

Iadj =

(√
2g√
N

)2

C2(G) (3.4)

×
N−1∑
n=0

∫
d4k

i(2π)4
1

m2
cn

− (p− k)2

[
sin2 θn
mλn+− k/

+
cos2 θn
mλn−− k/

]
,

where p is the four-momentum of the external gaugino
line and C2(G) is the quadratic Casimir operator for the
adjoint representation of the gauge group G. With the
introduction of an ultraviolet cutoffΛ, the divergence parts
are calculated to be

Idiv
gauge =

C2(G)
16π2

(
g√
N

)2

(3.5)

×
N−1∑
n=0

(
p/− 4

(
mλn+ cos2 θn +mλn− sin2 θn

))
lnΛ2,

Idiv
adj =

C2(G)
16π2

(
g√
N

)2

(3.6)

×
N−1∑
n=0

(
p/+ 2

(
mλn+ sin2 θn +mλn− cos2 θn

))
lnΛ2.

These divergences should be renormalized by appropriate
counter-terms. Note in particular that the total one-loop
divergent correction to the gaugino mass is

δm(1) =
2NC2(G)

16π2

(
g√
N

)2
FS5

〈S5〉 lnΛ2. (3.7)

It is interesting that, since this total mass divergence is pro-
portional to FS5, there appears no ultraviolet divergence
in the limit of the radius modulus SUSY breaking. This is
indeed a consistent result and will be discussed in detail
later on. On the other hand, the divergences generally ap-
pear in other cases – for example, in the dilaton/moduli
dominant cases.

The finite part of the gauge field correction is given by

Ifin
gauge =

−2NC2(G)
16π2

(
g√
N

)2
FT
〈T 〉 . (3.8)

We have used the approximation that the zero-mode gaug-
ino mass, i.e. the SUSY-breaking mass scale is much smaller
than the KK masses. The finite correction from Iadj can
also be estimated in a similar way and is found to be
− 1

2I
fin
gauge. We thus obtain the zero-mode gaugino mass up

to one-loop level,

mλ0± = ± FS5

2 〈S5〉 − FT
2 〈T 〉 − 2NC2(G)g2

4

16π2

FT
〈T 〉 . (3.9)

The four-dimensional effective gauge coupling g4 is defined
in (2.8). One can find two important points from this ex-
pression for the one-loop gaugino masses. Firstly, the ra-
diative correction is proportional to FT but not to FS .
This fact seems to agree with a result of string-inspired
supergravity models [11]. There, one-loop corrections to
the gaugino masses arise from string threshold corrections
or the effects of bulk fields and are specified by the modu-
lus field T . The second point is that the size of the one-loop
correction is controlled by the gauge beta function of heavy
fields. This fact coincides with the spectrum of [14] which
is determined by wavefunction renormalizations from vec-
tor messengers [15]. The dependence on the beta-function
coefficients also appears in the supergravity models.

3.1.2 Matter contribution

Let us consider another one-loop contribution to the gaug-
ino masses from matter multiplets. With the mass splitting
between matter fermions and sfermions, the one-loop cor-
rection to the gaugino two-point function is evaluated as

Imat =

(√
2g√
N

)2

T2(R)

×
N−1∑
n=0

∫
d4k

i(2π)4
(3.10)

×
[

1
mn − k/

(
1/2

m2
φn+

− (p− k)2
+

1/2
m2
φn−− (p− k)2

)
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− 1
mn + k/

(
1/2

m2
φn+

− (p− k)2
+

1/2
m2
φn−− (p− k)2

)]
,

where T2(R) is the quadratic Dynkin index for the repre-
sentation R of the unbroken gauge group G. The scalar
mass eigenvalues mφn± are given in (2.28) with Γ = 1/4
(see the discussion in Sects. 2.2.2 and 2.2.3). The divergent
part of (3.10) is given by

Idiv
mat =

2NT2(R)
16π2

(
g√
N

)2

p/ lnΛ2. (3.11)

Note that this is a supersymmetric correction. There is no
divergence to the gaugino masses from the matter multi-
plets since only scalar components receive SUSY-breaking
masses. In other words, the loop integrals converge if the
scalar propagators are expanded with respect to SUSY-
breaking VEVs. As for the finite part, we obtain

Ifin
mat =

NT2(R)
16π2

(
g√
N

)2
FT
〈T 〉 . (3.12)

One can see that as in the vector case, the matter contri-
bution is controlled by the modulus T . After all, the total
amount of mass corrections is read from (3.9) and (3.12),
and the gaugino mass up to one-loop level is given by

mλ0± = ± FS5

2 〈S5〉− FT
2 〈T 〉+N

[
−2C2(G)+2T2(R)

] g2
4

16π2

FT
〈T 〉 .

(3.13)
The radiative correction is proportional to FT and the
gauge beta function of the heavy vector and matter mul-
tiplets.

3.2 Higgs masses

Next we study one-loop corrections to the masses of the
Higgs scalars. Having the large top Yukawa coupling in
mind, the corrections from various types of large Yukawa
couplings will be investigate in detail. Gauge corrections
can be estimated in a similar way and give qualitatively
similar results. In the numerical evaluations, we will fo-
cus on the three special limits discussed in Sect. 2 and
find that all types of radiative corrections to Higgs masses
are consistent with the expected SUSY-breaking patterns.
In particular, the corrections become ultraviolet finite in
the limit of the radius modulus SUSY breaking. (We have
already found in the previous section the same result for
gaugino masses [see (3.7)].) The compactification-scale de-
pendence of the radiative corrections is another important
factor to be examined. We will show that its quantita-
tive behavior is also properly taken into account in our
framework.

3.2.1 Bulk–brane–brane couplings

We want to study the radiative corrections from Yukawa
couplings involving the KK modes of the matter fields.

The first case we consider is a Yukawa coupling among
one “bulk” field and two “brane” fields. Suppose that Li
(i = 1, . . . , N) and L̄j (j = 1, . . . , N−1) are introduced as
matter multiplets as described in Sect. 2.2 and e as a chiral
superfield charged only under G1 (would-be localized field
on a brane in the five-dimensional point of view). The
transformation properties are listed below:

G1 G2 G3 . . . GN
L1 1 . . . . . . 1
L̄1 1 . . . . . . 1
L2 1 . . . . . . 1
L̄2 1 . . . . . . 1
...

...
...

...
. . .

...
e 1 . . . . . . 1
H 1 1 . . . . . . 1

(3.14)

In addition to the tree-level matter Lagrangian (2.17), we
have a gauge-invariant Yukawa term among L1, e and the
Higgs field H. Other gauge-invariant couplings may be
forbidden by symmetry arguments, for example, invariance
under e → −e andH → −H. The resultant superpotential
is written in terms of the mass eigenstates of the L defined
in Sect. 2

W = y

(
N−1∑
n=0

ηLn L̃n

)
eH +

N−1∑
n=0

mLnL̃n
˜̄Ln, (3.15)

where mLn are the KK masses (2.22), and ηLn denotes the
mixing between L1 and the mass eigenstate L̃n. Its explicit
form has been derived in Sect. 2.3:

ηLn =

√
2

2δn0N
cos

( nπ
2N

)
. (3.16)

Eliminating the matter auxiliary fields from the Lagrang-
ian (2.17) and (3.15) leads to

L = −yψe
(
N−1∑
n=0

ηLnψL̃n

)
H

− |y|2
2

(∣∣∣∣N−1∑
n=0

ηLn L̃
′
n

∣∣∣∣2 +
∣∣∣∣N−1∑
n=0

ηL∗
n
˜̄L′
n

∣∣∣∣2
)
H†H

− y√
2
eH

N−1∑
n=0

ηLn

×
[(

FS
2 〈S〉 −m∗

Ln

)
L̃′
n +

(
FS

2 〈S〉 +m∗
Ln

) ˜̄L′
n
†
]

+h.c.+ . . . , (3.17)

where ψX means the spinor component of a chiral multiplet
X. The sfermion fields with primes are the mass eigenstates
which completely diagonalize the mass matrix involving
SUSY-breaking effects,

L̃n =
1√
2
L̃′
n +

1√
2
˜̄L′
n
†, ˜̄Ln =

−1√
2
L̃′
n +

1√
2
˜̄L′
n
†. (3.18)
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Fig. 1. The ultraviolet cutoff dependences of the loop correc-
tion from the bulk–brane–brane type Yukawa coupling. From
the upper one, the dilaton, moduli and the radius modulus
SUSY breaking are plotted. We take y = 1 and N = 200 as an
example

It is important to notice that in deriving the Lagrangian
(3.17), we have partly fixed the normalization function Kh

for the matter multiplets as
〈
∂ lnKh

∂S

〉
= 1

2〈S〉 . As will be
seen below, this form of VEV is required for the model to
be consistent at the quantum level. Together with (2.29),
we obtain

Kh(S, S†) = c(S + S†), (3.19)

with an arbitrary constant c.
With these matter–Higgs interactions at hand, we have

three types of diagrams which contribute to the Higgs mass
corrections. Each diagram involves an interaction in the
Lagrangian (3.17):
(1) Yukawa couplings with the fermions running in the
loop,
(2) sfermion-Higgs quartic couplings, and
(3) sfermion-Higgs trilinear couplings. These contributions
to the Higgs two-point function become

I(1) = −2|y|2
N−1∑
n=0

∫
d4p

i(2π)4
|ηLn |2

p2 −m2
Ln

, (3.20)

I(2) = |y|2
N−1∑
n=0

∫
d4p

i(2π)4
|ηLn |2

2
(3.21)

×
[

1
p2 −m2

Ln+

+
1

p2 −m2
Ln−

]
+ |y|2

∫
d4p

i(2π)4
1
p2 ,

I(3) = |y|2
N−1∑
n=0

∫
d4p

i(2π)4
|ηLn |2

2

×


∣∣∣ FS

2〈S〉 −m∗
Ln

∣∣∣2
p2 −m2

Ln+

+

∣∣∣ FS

2〈S〉 +m∗
Ln

∣∣∣2
p2 −m2

Ln−

 1
p2 . (3.22)

The sfermion mass eigenvalues m2
Ln± are given by (2.28).

We show in Fig. 1 the total one-loop correction I = I(1) +

I(2)+I(3). The horizontal axis denotes the momentum cut-
off Λ normalized by the compactification scale. We particu-
larly focus on the three limits of the SUSY-breaking order
parameters which were presented in Table 1. It is found
from the figure that the loop correction is independent of
the momentum cutoff and becomes finite in the limit of the
radius modulus breaking (bold line). On the other hand,
in the dilaton/moduli dominance scenarios (dashed/solid
lines), the corrections linearly depend on Λ. This behavior
is understood as the number of KK modes running around
the loop. That is, the KK modes whose masses are below
the momentum cutoff can contribute to the radiative cor-
rections. In these three limited cases, the structure of the
radiative corrections is consistent with the results which
have been obtained in the literature.

The finite result for the Higgs mass is also analyti-
cally understood by noting that, in the limit FS5/ 〈S5〉 =
FS/ 〈S〉 + FT / 〈T 〉 = 0, the total correction I can simply
be summarized as follows:

I (FS5 = 0) = (3.23)

− |y|2
N−1∑
n=0

∑
i=+,−

∫
d4p

i(2π)4
|ηLn |2

[
1

p2 −m2
Ln

− 1
p2 −m2

Ln i

]
.

The ultraviolet finiteness of this type of momentum inte-
gral will be discussed in Sect. 5.

3.2.2 Bulk–bulk–brane couplings

In a similar way, we calculate one-loop Higgs masses from
the bulk–bulk–brane-type Yukawa couplings. In this case,
the matter multiplets Li (L̄i) and ej (ēj) are charged under
the G gauge symmetry, and the Higgs H is introduced as
a singlet field. To implement the orbifold projection, LN
and ē1 are removed from the spectrum. The transformation
properties of these fields are given by

G1 G2 G3 . . . GN
L1 1 . . . . . . 1
L̄1 1 . . . . . . 1
L2 1 . . . . . . 1
L̄2 1 . . . . . . 1
...

...
...

...
...

...
e1 1 . . . . . . 1
e2 1 . . . . . . 1
ē2 1 . . . . . . 1
...

...
...

...
...

...
H 1 1 . . . . . . 1

(3.24)

The superpotential terms for masses and Yukawa couplings
are written in the mass eigenstate basis defined in a similar
fashion to (3.18),

W = y

(
N−1∑
n=0

ηLn L̃n

)(
N−1∑
l=0

ηel ẽl

)
H +

N−1∑
n=0

mLnL̃n
˜̄Ln
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+
N−1∑
n=0

men
ẽn˜̄en. (3.25)

Notice that we have introduced only one type of Yukawa
term yL1e1H. This is analogous to the fact that a bulk
Yukawa coupling is not consistent with the symmetries of
five-dimensional supersymmetric theories. In the present
four-dimensional model, other gauge-invariant Yukawa
terms can be forbidden by some discrete symmetry, as al-
ready done for the bulk–brane–brane type Yukawa terms.
Integrating out the matter multiplet F terms, we obtain
the following interaction terms

L = −|y|2
2

×
[∣∣∣∣N−1∑

n=0

ηLn L̃
′
n

∣∣∣∣2 +
∣∣∣∣N−1∑
n=0

ηL∗
n
˜̄L′
n

∣∣∣∣2 +
∣∣∣∣N−1∑
n=0

ηenẽ
′
n

∣∣∣∣2

+
∣∣∣∣N−1∑
n=0

ηe∗n ˜̄e′
n

∣∣∣∣2
]
H†H

−y

2
H

N−1∑
n=0

N−1∑
l=0

ηenη
L
l (ẽ′

n − ˜̄e′
n
†)

×
[(

FS
2 〈S〉 −m∗

Ll

)
L̃′
l +

(
FS

2 〈S〉 +m∗
Ll

) ˜̄L′
l
†
]

−y

2
H

N−1∑
n=0

N−1∑
l=0

ηLnη
e
l (L̃

′
n − ˜̄L′

n
†)

×
[(

FS
2 〈S〉 −m∗

el

)
ẽ′
l +

(
FS

2 〈S〉 +m∗
el

)˜̄e′
l
†
]

(3.26)

−y
(
N−1∑
n=0

ηenψẽn

)(
N−1∑
l=0

ηLl ψL̃l

)
H + h.c.+ . . .

With this Lagrangian, the diagrams of loop corrections to
the Higgs mass are similar to those in the previous section:
(1) Yukawa couplings to the Higgs,
(2) sfermion–Higgs quartic couplings, and
(3) sfermion–Higgs trilinear couplings. Each contribution
is given by

I(1) = −2|y|2
N−1∑
n=0

N−1∑
l=0

∫
d4p

i(2π)4
|ηLn |2|ηel |2

× p2

(p/−mLn)(p/−mel
)
, (3.27)

I(2) = |y|2
N−1∑
n=0

∫
d4p

i(2π)4
|ηLn |2

2
(3.28)

×
[

1
p2 −m2

Ln+

+
1

p2 −m2
Ln−

]
+ (L ↔ e),
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Fig. 2. The cutoff dependences of the loop correction from the
bulk–bulk–brane-type Yukawa coupling. The dilaton, moduli
and radius modulus SUSY breaking are plotted from the above
(the dashed, solid, and bold lines, respectively). We take y = 1
and N = 200 as an example

I(3) = |y|2
N−1∑
n=0

N−1∑
l=0

∫
d4p

i(2π)4
|ηLn |2

2
|ηel |2

2

×
[

1
p2 −m2

en+

+
1

p2 −m2
en−

]
(3.29)

×


∣∣∣ FS

2〈S〉 −m∗
Ln

∣∣∣2
p2 −m2

Ln+

+

∣∣∣ FS

2〈S〉 +m∗
Ln

∣∣∣2
p2 −m2

Ln−

+ (L ↔ e).

The total loop correction I = I(1)+I(2)+I(3) is plotted for
several cases in Fig. 2, where the Yukawa coupling constant
y is taken to be 1 as an example. One can see that the cutoff
dependences of the loop correction have similar behaviors
as in the previous section; I is insensitive to the momentum
cutoff Λ for the radius modulus SUSY breaking, while I
is cutoff dependent (roughly proportional to Λ2) for the
other cases, which dependence is interpreted as the number
of KK modes circulating in the loops.

3.2.3 Bulk–bulk–bulk couplings

Finally we consider the case that all L, e and H are in-
troduced as bulk multiplets and examine radiative cor-
rections to the massless Higgs scalar. Suppose that cor-
rections come from the superpotential Yukawa coupling
L1e1H1 and other Yukawa terms are absent. Thus the sit-
uation is almost the same as the bulk–bulk–brane Yukawa
case in Sect. 3.2.2, except for an overall rescaling of the
Yukawa couplings. However we now have an additional
scalar three-point vertex, which is a cross term generated
by integrating out the F component of the Higgs multiplet,

− y
N−1∑
n=0

ηHn

(〈
∂ lnKh

∂ lnS

〉
FS
〈S〉H̃n +m∗

Hn

˜̄Hn
†
)

×
(
N−1∑
n=0

ηLn L̃n

)(
N−1∑
l=0

ηel ẽl

)
+ h.c. (3.30)
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Other couplings of the Higgs zero mode are modified only
by the rescaling with the wavefunctions ηH, H̄0 = 1/

√
N ,

which does not cause any qualitative changes to the mass
corrections.

While the corrections induced by the vertex (3.30) are
generally divergent logarithmically, no qualitative change
compared to the bulk–bulk–brane Yukawa case is found
for the supergravity SUSY-breaking models. On the other
hand, one might wonder that the vertex (3.30) gives rise
to a cutoff-dependent contribution for the radius modulus
breaking where even logarithmic divergences are found to
vanish in the previous analyses. However, it is found from
the matter Kähler form (3.19) that (3.30) leads to the
interactions of the Higgs n = 0 modes

− y√
2N

(
mH0+H̃

′
0 +mH0−

˜̄H ′
0
†
)(N−1∑

n=0

ηLn L̃n

)(
N−1∑
l=0

ηel ẽl

)
+ h.c., (3.31)

in the FS5 = 0 limit. Therefore the coupling of the Higgs
massless mode of (3.30) is vanishing, independently of
which of the Higgs fields H and H̄ contain a light mode.
As a result, the radiative corrections from bulk–bulk–bulk
Yukawa couplings are qualitatively unchanged from the
bulk–bulk–brane Yukawa case.

3.3 Radius dependence

We have so far analyzed the momentum cutoff dependence
of the radiative corrections. As another important factor,
let us examine how the loop corrections to the scalar masses
depend on the compactification radiusR of the fifth dimen-
sion. Consider for example the corrections from a bulk–
brane–brane-type Yukawa coupling. When all the parame-
ters except for R are fixed, the following R dependences of
the one-loop corrections on the scalar masses are expected:

δm2
φ ∝ R [dilaton], (3.32)

δm2
φ ∝ R3 [moduli], (3.33)

δm2
φ ∝ R−2 [radion]. (3.34)

These behaviors can be understood as follows. In the dila-
ton dominant case, the R1 behavior is interpreted as the
number of KK modes (� ΛR) propagating in the loop dia-
grams. In the moduli dominant case, we have an R3 factor
from the number of KK modes (R1) and SUSY-breaking
effects [(FT / 〈T 〉)2 ∝ R2]. On the other hand, the radia-
tive corrections to the Higgs masses are expected to behave
like R−2 in the radius modulus breaking. This is because
the radius modulus breaking is equivalent to the bound-
ary condition breaking of supersymmetry [17], and hence
quadratic divergences are cut off by the compactification
scale due to the locality in the extra dimension.

In Fig. 3, we show the radius dependences of the scalar
mass correction from bulk–brane–brane Yukawa couplings
(Sect. 3.2.1). The horizontal axis denotes the size of R and
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Fig. 3. Typical radius dependences of the radiative correction
to the Higgs mass. The horizontal axis means the compacti-
fication radius and the vertical one the magnitudes of the
correction. The dashed, solid, and bold lines correspond to
the dilaton dominance, the moduli dominance, and the radius
modulus breaking, respectively. We take in the figure y = 1
and N = 200

the vertical one the magnitudes of the one-loop corrections.
In the figure, R is taken to be within a reasonable regime,
1 < ΛR < 10 (Λ is the momentum cutoff). The upper
bound comes from the fact that finite scalar masses are
realized in the region Λ 
 v, and the lower bound from the
requirement that at least one KK mode runs around the
loop. One can see from the figure that the expected results
(3.32)–(3.34) are certainly reproduced in our model.

Summarizing Sect. 3, we have explicitly calculated one-
loop radiative corrections to the gaugino and Higgs scalar
masses. The one-loop gaugino masses are proportional to
the gauge beta function of the heavy fields and also to
the modulus auxiliary VEV FT . This seems to be a result
consistent with the predictions of string-inspired super-
gravity models. For the Higgs mass, we have evaluated the
one-loop contributions from various types of Yukawa in-
teractions. We have particularly found that in the limit of
the radius modulus SUSY breaking, the corrections are in-
sensitive to the ultraviolet cutoff of momentum integrals,
while those related to the supergravity models depend lin-
early or quadratically on the cutoff scale. Furthermore,
the radius R dependence of the Higgs mass has been stud-
ied. There, we have found that even for a finite number
of gauge groups – that is, with finite KK modes included
– the expected behaviors emerge in certain regions of the
modulus F terms.

4 Finiteness of radiative corrections

4.1 Large N

We have observed by examining the cutoff and compacti-
fication-scale dependences that finite radiative corrections
appear in the limit of the radius modulus breaking for a
finite number of gauge groups (i.e. finite KK modes). In
continuous five-dimensional theory, radiative corrections
to the Higgs masses are found to become finite if one
adopts SUSY breaking with boundary conditions [18]. In
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this case, it is important to include an infinitely large num-
ber of KK modes in summing up loop corrections while pre-
serving five-dimensional supersymmetry. In other words,
if one is allowed to include the effects of KK modes suffi-
ciently heavier than the momentum cutoff, the locality in
the extra dimension is recovered [19]. In our model, this
is interpreted as involving a large number of gauge groups
or taking a lower four-dimensional cutoff. For example,
for N = 200, loop corrections become cutoff independent
in the regime ΛR < 15, while the cutoff insensitivity can
hardly be seen for N = 10. However we here want to stress
that to have finite corrections is not the main point of this
work because we only deal with a four-dimensional the-
ory. (For an approach to cutoff-insensitive Higgs masses in
product-group gauge theories, see [20].)

In this subsection, we analytically clarify the high-
energy behavior of the radiative corrections to Higgs scalar
masses, especially focusing on the insensitivity to an ul-
traviolet cutoff. Let us study the following typical form
of radiative corrections to the Higgs masses from bosonic
and fermionic KK modes:

Ib = |y|2
∑
n,±

∫
d4p

(2π)4
1

p2 +m2
n±

,

If = −2|y|2
∑
n

∫
d4p

(2π)4
1

p2 +m2
n

, (4.1)

where the factor 2 in If has been introduced so that the bo-
son and fermion degrees of freedom are equal. This type of
corrections would appear, for example, from the Yukawa
couplings between bulk matter multiplets and a bound-
ary Higgs field. In fact, we have already encountered it
in (3.23). (That is the reason why we have written the
coupling as y in the above equations.) A similar analysis
can also be performed for the gauge interactions. We treat
these momentum integrals with the proper-time regular-
ization and then obtain for Ib

Ib =
|y|2
16π2

∑
n,±

∫ ∞

0
dt

1
t2

e−tm2
n± , (4.2)

and a similar expression for If . An important point is that
the integration and summation can be safely exchanged
if one introduces a ultraviolet momentum cutoff Λ and
truncates the KK-mode sum at a finite level. Note that
the model in this paper naturally contains a finite number
of KK modes. Thus we find

Ib =
|y|2
16π2

∫ ∞

1/Λ2
dt

1
t2

∑
n,±

e−tm2
n± . (4.3)

To see the cutoff dependence of the radiative corrections,
we examine the beta functions in the sense of the Wilson
renormalization-group equations:

∂Ib (f)

∂ lnΛ2 =
εb (f) |y|2

16π2 Λ2, (4.4)

εb =
∑
n,±

e−m2
n±/Λ

2
, εf = 2

∑
n

e−m2
n/Λ

2
. (4.5)
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Fig. 4. The cutoff dependences of radiative corrections in the
large N limit. The horizontal axis denotes the cutoff scale and
the vertical one the difference between εb and εf . We take
FS/ 〈S〉 and/or FT / 〈T 〉 = 1/10R in the figure. The dashed,
solid, and bold lines correspond to the dilaton, moduli domi-
nant, and the radius modulus SUSY breaking, respectively

Since we are now interested in a particular relation be-
tween finite radiative corrections and the radius modulus
breaking, it is appropriate to take the large N limit (the
five-dimensional limit) in analyzing the corrections. In this
limit, the bosonic and fermionic KK modes are found from
the previous results to have the following form of the mass
eigenvalues:

m2
n± =

(
n

R
± FT

2 〈T 〉
)2

+
∣∣∣∣ FS2 〈S〉

∣∣∣∣2 −
∣∣∣∣ FT2 〈T 〉

∣∣∣∣2 ,
m2
n =

( n
R

)2
, (4.6)

which is valid for vector and matter multiplets up to the
second order of the F (or exact in the dilaton/radius mod-
ulus SUSY-breaking cases). With this mass splitting, we
show in Fig. 4 the differences between the beta-function co-
efficients εb and εf , i.e. the cutoff dependences of the radia-
tive corrections for the three limited cases discussed before.
It is clearly seen from the figure that the cutoff-dependent
behaviors are rather different from each other; in particu-
lar, the ultraviolet divergence is highly suppressed in the
radius modulus breaking case. The dilaton and moduli
SUSY breaking have a similar behavior for a large value
of the cutoff scale Λ. This is because in both cases, the
corrections are proportional to the number of KK modes
as mentioned previously.

To analytically study these divergence properties, we
estimate the contributions by use of the Poisson formula
and obtain

εb = 2
√

πΛR

× exp

[
−1
4Λ2

(∣∣∣∣ FS〈S〉
∣∣∣∣2 −

∣∣∣∣ FT〈T 〉
∣∣∣∣2
)]

×
∑
n

e− π2n2

(ΛR)2 cos(πFTR2n), (4.7)
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εf = 2
√

πΛR
∑
n

e− n2

(ΛR)2 . (4.8)

As can be seen in this expression, for a large value of ΛR,
the zero-mode contributions dominate due to the exponen-
tial damping factors. If assumed that the SUSY-breaking
scale is much lower than the compactification radius, the
zero-mode contribution approximately gives

ε = ε0b − ε0f �
√

π
2
R

Λ

(∣∣∣∣ FT〈T 〉
∣∣∣∣2 −

∣∣∣∣ FS〈S〉
∣∣∣∣2
)
. (4.9)

It is easily found that the Λ−1 dependence of (4.9) implies
linearly divergent corrections to Higgs masses. We can see
from (4.9) that in the radius modulus breaking case, where
FS5 ∝ (FS/ 〈S〉 + FT / 〈T 〉) = 0, the radiative correction
becomes cutoff insensitive and therefore a finite result fol-
lows. On the other hand, the dilaton/moduli dominant
cases generally have divergent corrections proportional to
ΛR.

4.2 Boundary condition breaking

In continuum five-dimensional theories, it is well known
that supersymmetry breaking with boundary conditions
gives finite radiative corrections to scalar soft masses [18].
This is partly because supersymmetry is broken globally
in the bulk and hence the breaking effect is cut off by the
size of the extra dimension. On the other hand, in the
present four-dimensional model, the finiteness is achieved
on a specific line of the SUSY-breaking parameter space.
We will show how these two cases are related. To this end,
we formulate the “boundary” condition breaking of super-
symmetry in our setup, and examine whether the result-
ing spectrum matches that of the radius modulus breaking
(FS5 = 0). If these two spectra are found to be equivalent,
they may be transformed to each other by a unitary trans-
formation, which gives a support that radiative corrections
are ultraviolet finite.

4.2.1 Without twists

Before discussing the boundary condition breaking, it is
useful to recall how to compactify the latticized extra di-
mensions. To begin with, suppose that there are an in-
finite number of gauge groups and corresponding matter
fields. Compactifying physical space is performed with the
identification of indices under i → i + N , which is inter-
preted as a coordinate translation in the extra dimension.
On the other hand, the identification on the field space,
i.e. boundary conditions under this translation, is given
by Φi+N ≡ Φi. These procedures result in leaving the N
copies of gauge groups and matter fields as physical de-
grees of freedom. The identification on the field space is
clearly seen by recombining the fields as follows:

Φj =
1√
N

N−1∑
k=0

(ωk)j Φ̃k, (4.10)

where ωk ≡ e
2πk
N i, which is just the Fourier mode expansion

in the continuum limit. Note that there are only finite
numbers of mass eigenstates Φ̃k, because the model comes
back to higher dimensions only in the large N limit. At
this stage, it is straightforward to include various types
of twisted boundary conditions. In what follows, we will
study a specific case which is related to the radius modulus
breaking of supersymmetry.

4.2.2 SU(2) twist

Along the line discussed above, we demonstrate the twisted
boundary condition for vector multiplets as an illustrative
example. The field content we consider is given by Table 1
except that we now have an infinite numbers of gauge
groups and Q fields. In particular, there are two types of
spinors λ and χ for every gauge group. The identification
of physical space is the same as the above toy model. A
new ingredient now introduced is the boundary condition
on the field space. Let us consider the following SU(2)
twist upon the identification of field space:(

λj+N
χj+N

)
= e2πi θaσa

(
λj
χj

)
, (4.11)

where σa are the Pauli matrices. The parameters θa will
turn out to be SUSY-breaking order parameters. The mass
matrix of these spinor fields must be consistent with this
identification and therefore takes the form for θa 
 1

v
(
λ | χ)(M0 + δM)

(
λ

χ

)
+ h.c., (4.12)

M0

=




1 −1

−1
. . .
. . .

. . .
−1 1

1 −1
. . .

. . .

. . . −1
−1 1




, (4.13)

δM =



−2πiθ3

−2π(iθ1 + θ2)

−2πiθ3 −2π(iθ1 + θ2)




. (4.14)

The M0 part denotes the mass matrix for untwisted fields,
whose eigenvalues are given by (2.4). On the other hand,
δM arises due to the twisting boundary condition (4.11).
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As we mentioned before, these mass terms become the
kinetic energy along the extra dimension if one takes the
continuum limit.

Let us diagonalize the mass matrix by perturbation
theory for θa 
 1. The eigenvalues and eigenmodes of the
unperturbed matrix M0 are given by

m
(0)
k± = ±2v sin

(
kπ
N

)
,

ψ̃±
k =

1√
2N

N∑
j=1

(ωk)j(±λj + χj). (4.15)

Irrelevant overall phases factors have been absorbed into
the field redefinition. In perturbation theory, the non-zero
matrix elements of δM linear in the θ are〈

ψ̃+
k

∣∣ δM
∣∣ψ̃+
k

〉
=
〈
ψ̃−
k

∣∣ δM
∣∣ψ̃−
k

〉
(4.16)

=
−2π
N

cos
(

2πk
N

)
(iθ1 + θ2 + iθ3),

and the eigenvalues at first order are thus given by

m
(1)
k± = m

(0)
k± − 2πv

N
cos

(
2πk
N

)
(iθ1 + θ2 ± iθ3).

(4.17)

The first term on the right-handed side means the KK
masses and therefore the second one is interpreted as a SU-
SY-breaking effect. For example, in the case that θ1, θ2 �= 0
and θ3 = 0, the mass eigenvalues for the low-lying modes
(k 
 N) read

m
(1)
k± � ± k

R
− FT

2R
, (4.18)

where the SUSY-breaking order parameter is identified as
FT ≡ 2(iθ1 + θ2). This is indeed the spectrum that is
given by the radius modulus breaking (2.15). Therefore
the finiteness property of radiative corrections in this case
is now easily understood.

For θ3 = 0, half of the supersymmetry in five dimen-
sions is left unbroken, namely, a linear combination of the
zero-mode gauge fermions is massless, which composes a
four-dimensional massless vector multiplet together with
the gauge boson zero mode. When θ3 is turned on as well
as θ1,2, the remaining N = 1 supersymmetry is broken.
This corresponds to applying the twisted boundary con-
dition with a U(1) rotation which does not commute with
the N = 1 supersymmetry.

It may be interesting to rewrite the mass term (4.12) in
terms of the fields with untwisted boundary conditions. We
consider for simplicity the twisting with σ2. It is straight-
forward to generalize the following result to the cases with
generic types of twisting. Let us transform the spinor fields
by (

λj
χj

)
= e2πiθ2 j

N σ2

(
λ′
j

χ′
j

)
. (4.19)

It can be easily checked that the fields with primes satisfy
the untwisted boundary condition under the translation
j → j +N , (

λ′
j+N

χ′
j+N

)
=

(
λ′
j

χ′
j

)
. (4.20)

Almost all terms in the Lagrangian are invariant under
this field redefinition, while the mass term (4.12) is not.
In other words, this means that the kinetic term along
the fifth dimension is not invariant under the coordinate-
dependent phase rotation. In the basis of λ′ and χ′, the
mass matrix becomes for θ 
 1,

(4.12) �
(
λ′ | χ′

)
M0

(
λ′

χ′

)
(4.21)

−2πθ2v
N

(
λ′

1 . . . λ
′
N

)


1
. . .

1
1



λ′

1
...
...
λ′
N



−2πθ2v
N

(
χ′

1 . . . χ
′
N

)


1
. . .

1
1



χ′

1
...
...
χ′
N

 .

Diagonalizing this matrix should lead to the eigenvalues
(4.18) with θ1 = 0. The first term in the right-handed side
is the kinetic energy term along the fifth dimension. The
second and third terms can be interpreted as the mass
terms which come from a VEV of the extra component
of the gauge field [21]. That is, these three terms together
make up the covariant derivative of the spinor fields. It has
been shown [17] that the radius modulus breaking of super-
symmetry is equivalent to the Wilson line breaking, prov-
ing that a VEV of the extra component of the graviphoton
field generates SUSY breaking in five-dimensional off-shell
supergravity (as seen in the second and third terms above).
The present analysis makes it clear from a four-dimensional
viewpoint that the relevant VEV is that of the modulus
Q (FQ ∝ FT ).

5 Summary

In this paper, we have formulated four-dimensional SUSY
breaking in product-group gauge theories. The model con-
tains several modulus fields corresponding to such ones as
the dilaton and the radion. The modulus fields satisfy the
specific relations suggested by some correspondences to
higher-dimensional physics. From these, the relations are
extracted for the F component VEVs of the modulus fields.
The non-trivial moduli dependences of the action have also
been determined. We have shown that at intermediate en-
ergy regime, the mass spectra of typical SUSY breaking
scenarios (the dilaton/moduli dominance and the radius
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modulus breaking) appear in the corresponding limits on
the space of SUSY-breaking order parameters. We have
calculated in detail the gaugino and Higgs scalar masses
up to one-loop level. Our results seem to be consistent with
various aspects of bulk SUSY breaking, e.g. string-inspired
supergravity models.

The cutoff dependences of the loop corrections have
been investigated in detail. We have calculated the gaug-
ino and Higgs mass corrections from various types of gauge
and Yukawa couplings. In particular, we have shown that
insensitivity to an ultraviolet cutoff emerges for the radius
modulus breaking case. However, for other cases, the spec-
trum depends linearly or quadratically on the momentum
cutoff. This can be understood as the number of KK modes
running in the loop diagrams. The compactification radius
dependence of the one-loop mass spectrum has also been
studied.

The finiteness property of radiative corrections has
been examined from several different viewpoints. In par-
ticular, we have formulated in our setup the boundary con-
dition breaking of supersymmetry (or the Hosotani mech-
anism) and have shown that the spectrum indeed agrees
with that of the radius modulus breaking case. This result
indicates that the obtained finite corrections are due to a
global breaking of symmetries in the bulk.

While, in this work, we have focused on the special
limits corresponding to higher-dimensional SUSY break-
ing, it will be interesting to investigate other regions of
the modulus F terms. Such a generic pattern of F terms
might induce sparticle mass spectra not yet explored in the
literature. It is also possible to extend the present analy-
sis to include brane matter which is interpreted as being
charged under one of the gauge groups Gi. The SUSY-
breaking masses of this type of fields depend on whether
they can couple to the moduli S and Q. However, there
seem to be, in general, few principles to fix the modulus
couplings of the brane fields, and the couplings would also
depend on more fundamental theories. The presence of
brane fields may be useful to generate a Yukawa hierar-
chy of quarks and leptons. Explicit four-dimensional model
construction along this line leads to concrete predictions
of the (super) particle spectrum, that can be compared to
those of other models. The model parameters might then
be constrained by clarifying the spectrum and applying it
to supersymmetric standard models, etc. We leave such
phenomenological analyses to future work.
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